Crystal Structure

Communications

ISSN 0108-2701

3-Acetyl-4-benzoyl-2-methyl-5-phenyl-3,3a-dihydropyrazolo[2,3-c]-pyrimidine-7(6H)-thione

Mehmet Akkurt et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.
© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

3-Acetyl-4-benzoyl-2-methyl-5-phenyl-3,3a-dihydropyrazolo[2,3-c]-pyrimidine-7(6H)-thione

Mehmet Akkurt, ${ }^{\text {a }}$ Sema Öztürk, ${ }^{\text {a }}$ Hoong-Kun Fun, ${ }^{\text {b }}$ Zülbíye Önal ${ }^{\mathrm{c}}$ and Behzat Altural ${ }^{\text {c }}$

${ }^{\text {a Department of Physics, Faculty of Arts and Sciences, Erciyes University, } 38039}$ Kayseri, Turkey, ${ }^{\mathbf{b}}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {c }}$ Department of Chemistry, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
Correspondence e-mail: akkurt@erciyes.edu.tr

Received 3 May 2000
Accepted 12 May 2000

Data validation number: IUC0000142
The molecule of the title compound, $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, is not planar. The dihedral angle between the two phenyl rings is 27.46 (7) ${ }^{\circ}$ and in the dihydropyrazolopyrimidine ring the total puckering amplitude Q_{T} is $0.526(3) \AA$. The structure is stabilized by both intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction, and by an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bond.

Comment

Dihydro derivatives of pyrazolo[1,5-a]pyrimidine have high physiological activity, the most important being cardiovascular activity (Tsuda et al., 1986). The antitumor activity and the

(I)

(III)
potential therapeutic applications of several pyrazolo[3,4-d]ave also promped a more thorough investigation of these compounds (Youssif, 1997). This paper reports on the crystal structure of a substitution product of a fused pyrazole-pyri-
midine system, (III), interesting for its possible pharmacological activity.

In the pyrimidine ring, there are two local pseudo-mirrors, one running along $\mathrm{N} 1 \cdots \mathrm{C} 20$ and the other along the midpoints of the N2-C16 and C14-C15 bonds. The distance $\mathrm{N} 1-\mathrm{C} 16$ of 1.371 (3) \AA is significantly shorter than $\mathrm{N} 2-\mathrm{C} 20$ of 1.481 (3) \AA, because C16 is in an $s p^{2}$ hybridized state, while C 20 is $s p^{3}$.

The $\mathrm{C} 16=\mathrm{S} 1[1.664(2) \AA]$ double-bond length of the pyrimidine ring is not significantly different to the $\mathrm{C}=\mathrm{S}$ double-bond length $[1.669$ (3) \AA] in 1-amino-5-benzoyl-4-phenyl-1H-pyrimidine-2-thione (Akkurt et al., 1992). The angles $\mathrm{N} 1-\mathrm{C} 16-\mathrm{S} 1 \quad\left[121.2(2)^{\circ}\right]$ and $\mathrm{N} 2-\mathrm{C} 16-\mathrm{S} 1$ [126.1 (2) ${ }^{\circ}$] are almost equal, probably due to some attraction between S 1 and $\mathrm{H} 1 A(\mathrm{~S} 1 \cdots \mathrm{H} 1 A=2.72 \AA$) and some repulsion between S 1 and $\mathrm{N} 3[\mathrm{~S} 1 \cdots \mathrm{~N} 3=3.080(2) \AA]$.

As the total puckering amplitude Q_{T} (Cremer \& Pople, 1975) of the pyrazole ring is 0.230 (3) \AA, in the ninemembered dihydropyrazolopyrimidine ring with the C 20 atom displaced 0.439 (3) \AA from the plane of the other atoms, the puckering amplitude is 0.526 (3) \AA. This amplitude appears sensitive to the type of substituents present in the related ring, since the corresponding amplitudes in 2-methyl-5,6,7-tri-phenyl-6,7-dihydropyrazolo[2,3-a]pyrimidine (Lindeman et al., 1993) and in 7-acetyl-5-benzoyl-6-phenyl-8-methyl-4,7-di-hydropyrazolo[1,5-c]-1H-pyrimidine- 2-one (Çelik et al., 2000) are 0.56 and 0.37 (3), respectively.

The $\mathrm{C} 20-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 1$ and $\mathrm{N} 2-\mathrm{C} 20-\mathrm{C} 14-\mathrm{C} 15$ torsion angles are -168.4 (2) and -31.8 (3) $)^{\circ}$, respectively. The $\mathrm{C} 1-\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$ torsion angle of $2.2(4)^{\circ}$ possibly indicates π-conjugation involving the phenyl and benzoyl systems. It is interesting to note the relative orientations of the substituents attached to the pyrimidine ring. The dihedral angle between the two phenyl rings is $27.46(7)^{\circ}$. The basic factor influencing the orientation of the two rings is intermolecular interactions. The crystal structure is stabilized by the inter- and intramolecular hydrogen bonds.

Experimental

1-Amino-5-benzoyl-4-phenyl-1 H -pyrimidine-2-dione $\quad(0.2 \mathrm{~g}) \quad$ was dissolved in acetylacetone ($0.18 \mathrm{~g} ; 1: 30 \mathrm{~mol}$) and p-toluene sulfonic acid $(0.18 \mathrm{~g})$ was added in this solution as a catalyst at room temperature. The mixture was heated in a furnace at 388 K for 45 min . After cooling, the precipitate was separated from acetylacetone by filtering and the oily residue was stirred with diethyl ether. The crude product so formed was crystallized from n-butanol. Yield: 60%; m.p.: 520 K ; IR $(\mathrm{KBr}), \mathrm{cm}^{-1}: 3600-3400(\mathrm{~N}-\mathrm{H}), 3200-3100$ (aromatic $\mathrm{C}-\mathrm{CH}), 3000\left(\mathrm{CH}_{3}\right), 1720(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}), 1540-1400$ (aromatic skeleton), $1220(\mathrm{C}=\mathrm{S}), 780-680$ (pyrimidine skeleton); ${ }^{1} \mathrm{H}$ NMR (DMSO) p.p.m.: 2.14-2.49 $\left(s, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$, 4.10-4.15 ($s, 1 \mathrm{H}, \mathrm{CH}$), 5.37-5.43 ($s, 1 \mathrm{H}, \mathrm{NH}$), 6.99-7.33 ($m, 10 \mathrm{H}$, aromatic H) (Önal, 1997). Elemental analysis, $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires: C 67.85, H 4.91, N 10.79, S 8.22\%; found: C 67.73, H 4.77, N 10.41, S 8.15\%.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S} \\
& M_{r}=389.46 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=6.9505(3) \AA \\
& b=21.8820(8) \AA \\
& c=12.9619(5) \AA \\
& \beta=100.239(1)^{\circ} \\
& V=1939.99(13) \AA^{\circ} \\
& Z=4
\end{aligned}
$$

Data collection

Siemens SMART CCD area-
detector diffractometer
ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.931, T_{\text {max }}=0.985$
13631 measured reflections
4769 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.152$
$S=0.953$
4769 reflections
253 parameters
$D_{x}=1.333 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4312
reflections
$\theta=1.9-28.4^{\circ}$
$\mu=0.190 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, yellow
$0.38 \times 0.12 \times 0.08 \mathrm{~mm}$

2422 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.082$
$\theta_{\text {max }}=28.43^{\circ}$
$h=-9 \rightarrow 9$
$k=-28 \rightarrow 28$
$l=-8 \rightarrow 17$
Intensity decay: none

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0609 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.23$ e \AA^{-3}
$\Delta \rho_{\min }=-0.28$ e \AA^{-3}

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C16	$1.664(2)$	$\mathrm{N} 2-\mathrm{C} 20$	$1.481(3)$
N1-C16	$1.371(3)$	$\mathrm{N} 3-\mathrm{C} 17$	$1.281(3)$
N1-C15	$1.388(3)$	$\mathrm{O} 1-\mathrm{C} 13$	$1.228(3)$
N2-C16	$1.333(3)$	$\mathrm{O} 2-\mathrm{C} 21$	$1.197(3)$
N2-N3	$1.394(3)$		
C16-N1-C15	$124.9(2)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{N} 1$	$119.7(2)$
C16-N2-N3	$122.9(2)$	$\mathrm{N} 2-\mathrm{C} 16-\mathrm{N} 1$	$112.6(2)$
C16-N2-C20	$125.5(2)$	$\mathrm{N} 2-\mathrm{C} 16-\mathrm{S} 1$	$126.1(2)$
N3-N2-C20	$111.6(2)$	$\mathrm{N} 1-\mathrm{C} 16-\mathrm{S} 1$	$121.2(2)$
C17-N3-N2	$107.0(2)$	$\mathrm{N} 3-\mathrm{C} 17-\mathrm{C} 19$	$114.4(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.86	2.72	$3.565(2)$	170
$\mathrm{C} 4-\mathrm{H} 4 A \cdots 1^{\mathrm{ii}}$	0.93	2.44	$3.245(4)$	145
$\mathrm{C} 20-\mathrm{H} 20 A \cdots \mathrm{O} 2$	0.98	2.43	$2.869(3)$	107

Symmetry code: (i) $-x, 1-y,-z$; (ii) $x-1, \frac{1}{2}-y, z-\frac{1}{2}$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); software used to prepare material for publication: PARST (Nardelli, 1995).

References

Akkurt, M., Güldeste, A., Soylu, H., Altural, B. \& Sarıpınar, E. (1992). Acta Cryst. C48, 315-317.
Çelik, Í., Akkurt, M., Íde, S., Önal, Z. \& Altural, B. (2000). Z. Kristallogr. 215, 48-51.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Lindeman, S. V., Struchkov, Yu. T., Shishkin, O. V., Desenko, S. M., Lipson,
V. V. \& Orlov, V. D. (1993). Acta Cryst. C49, 896-898.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Önal, Z. (1997). PhD thesis, Erciyes University, Turkey.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT (Version 4). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tsuda, N., Mishina, T., Obata, M., Inui, A. \& Nakamura, T. (1986). Jpn Kokai Tokyo Koho, Jpn Patent 61/227 584 (Cl. C07D487/04).
Youssif, Ś. (1997). Monatsh. Chem. 128, 493-501.

